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Theoretical studies have shown that cross-correlation functions (CFs) of time series of ambient

noise measured at two locations yield approximations to the Green’s functions (GFs) that describe

propagation between those locations. Specifically, CFs are estimates of weighted GFs. In this paper,

it is demonstrated that measured CFs in the 20–70 Hz band can be accurately modeled as weighted

GFs using ambient noise data collected in the Florida Straits at �100 m depth with horizontal sepa-

rations of 5 and 10 km. Two weighting functions are employed. These account for (1) the dipole

radiation pattern produced by a near-surface source, and (2) coherence loss of surface-reflecting

energy in time-averaged CFs resulting from tidal fluctuations. After describing the relationship

between CFs and GFs, the inverse problem is considered and is shown to result in an environmental

model for which agreement between computed and simulated CFs is good.
VC 2015 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4928303]
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I. INTRODUCTION

The process by which approximations to Green’s func-

tions (GFs) between two locations are estimated by cross-

correlating time series of ambient noise recorded at those

two locations is widely referred to as noise interferometry

(NI). The underlying theory is now well developed.1–13 NI

has proven to be extremely useful in remote sensing applica-

tions, including seismic applications,14–17 helioseismic

applications,18,19 atmospheric acoustic applications,20–22

structural health monitoring,23,24 and ocean infragravity

wave studies.25 The utility of NI in underwater acoustic

applications,26–34 including passive echosounder applica-

tions,35–37 has also been demonstrated. In underwater acous-

tic applications of NI, most investigators have focused on

extracting estimates of the travel times of temporally

resolved multipaths from measured CFs. But, in situations in

which multipaths are not temporally resolved, the extraction

of information from a measured CF suitable for use in an

inverse analysis requires that one carefully considers and

accounts for subtle differences between CFs and GFs. That

is the case in the data that is analyzed here. Also, it should

be noted that, even when multipath arrivals are temporally

resolved in measured CFs, the accuracy of travel time esti-

mates can be significantly improved if CF waveform (phase)

information is exploited.38 Thus, from a remote sensing per-

spective, there is strong motivation to carefully examine the

relationship between CFs and GFs. Using data collected in

the Straits of Florida, that relationship is explored here. Both

the forward problem of simulating CFs, and the inverse

problem of finding the environmental model that gives the

best-fitting CF are considered here.

The data set analyzed here was collected in December

2012 in an NI experiment conducted in the Straits of Florida.

Figure 1 shows the location of the three ambient noise re-

cording systems that were deployed, and the water column

sound speed structure measured at the beginning of the six-

day time window that was used to produce the measured

CFs used in this paper. Those CFs, for instrument pairs 1-2

and 2-3, are shown in Fig. 2. Preliminary experimental

results and some details relating to signal processing are

described by Brown et al.39 Close examination of the CFs

for both the 1-2 and 2-3 instrument pairs reveals a small, but

measurable, current-induced timing shift of the energetic

portion of the CFs at both positive and negative lag. That

topic, including estimation of the current from the measured

CFs, is discussed in Godin et al.40 For the analysis presented

in this paper, the current-induced timing shifts at both posi-

tive and negative lag have been removed, and the resulting

positive and negative lag portions of the CFs have been

summed. This is done both to slightly improve the signal-to-

noise ratio (SNR) of the CFs that we analyze here, and to

insure consistency with the assumption made here of a sta-

tionary environment.

Section II focuses on the relationship between CFs and

GFs, and the forward problem of numerically simulating

CFs. It is argued that, for the data set considered here, CFs

must be modeled as weighted and phase-shifted GFs. The

two dominant weighting functions for the data set considered

are introduced and discussed. Section III considers the
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inverse problem of finding the environmental model for which

a suitable measure of misfit between measured and simulated

CFs is minimized. That exercise may be thought of as a sim-

ple extension of the ideas presented in Sec. II. Our results are

discussed in Sec. IV and summarized in Sec. V.

II. CF WAVEFORM MODELING: THE FORWARD
PROBLEM

The basic mathematical result underlying acoustic NI is

that the cross-correlation function (CF), CABðtÞ, of time se-

ries of acoustic pressure ambient noise at locations xA and xB

satisfies

d

dt
CAB tð Þ ¼ D tð Þ � G xBjxA;�tð Þ � G xAjxB; tð Þ½ �: (1)

where D(t) is an approximation to a delta function, “�”
denotes convolution, and the transient GF Gðxjx0; tÞ satisfies

r2 � 1

c2 xð Þ
@2

@t2

 !
G xjx0; tð Þ ¼ � d rð Þ

2pr
d z� z0ð Þd tð Þ;

(2)

where x ¼ ðx; y; zÞ; x0 ¼ ð0; 0; z0Þ, and r ¼ ðx2 þ y2Þ1=2
.

Because Eq. (1) plays a critical role in the results presented

below, a self-contained derivation of that equation is

included as an Appendix to this paper. The GFs are causal;

the positive (negative) lag portion of CABðtÞ describes propa-

gation from xB to xA (xA to xB). Consistent with Eq. (2), we

assume here that the environment is stationary, so

GðxBjxA; tÞ ¼ GðxAjxB; tÞ by reciprocity. With this assump-

tion, it follows from Eq. (1) that the negative lag structure of

CABðtÞ is redundant and that for t> 0,

d

dt
CAB tð Þ ¼ �D tð Þ � G xAjxB; tð Þ: (3)

The normal mode representation of �GðxAjxB;xÞ, the Fourier

transform of GðxAjxB; tÞ, is well known.42 (Note that unlike

Eq. (3), the normal mode representation assumes a layered me-

dium.) Consistent with Eq. (3), the normal mode representa-

tion of �CABðxÞ, satisfies �ix �CABðxÞ ¼ � �DðxÞ �GðxAjxB;xÞ,
or

�CAB xð Þ¼ �D xð Þ 1

ix

� �
i

4

� �X
m

wm zAð Þ

� wm zBð ÞH 1ð Þ
0 km xð ÞrABð Þ; (4)

where the normal modes, which are defined on the depth inter-

val ð�1; 0� are assumed to be normalized,
Ð 0

�1 w2
mðzÞ dz ¼ 1,

and rAB is the horizontal separation between xA and xB.

A straightforward derivation of Eq. (1) (see the

Appendix) involves making use of an exact identity involv-

ing GFs, Eq. (A9), together with the highly idealized

assumption, Eq. (A1), that noise sources are delta-correlated

in space and time. The latter assumption is clearly an

approximation. In spite of this, Eq. (1) and, hence, also Eqs.

(3) and (4) remain useful approximate results provided the

distribution of noise sources is approximately diffuse. To

account for physical processes that are not accounted for in

the derivation of Eq. (1), including a diffuse but nonuniform

distribution of noise sources, a weighting function26 can be

included on the right-hand side of Eq. (4).

The weighting function used here is a product of two

terms. The first accounts for the fact that in the frequency

band used here to construct CFs, 20–70 Hz, noise sources,

including shipping and wind-related noise, are predomi-

nantly near-surface sources.41 (Seismic sources also contrib-

ute to ambient noise in this frequency band, but there was no

known nearby exploration geophysics activity during our

experiment, or experimental evidence of its presence.) The

pressure-release boundary condition at the air–sea interface

then leads to a dipole radiation pattern, with sin h weighting,

where h is the propagation angle at the sea surface measured

relative to the horizontal. The relevance of the dipole excita-

tion weighting in underwater acoustic NI applications was

first pointed out by Roux et al.26 The second term in the

weighting function that we employ accounts for the fact that

tidal fluctuations lead to phase fluctuations—and thus coher-

ence loss—of surface reflecting energy, which is partially fil-

tered out by the phase-coherent processing that we perform.

FIG. 1. (Left) Map showing the locations of instruments 1, 2, and 3 in the

December 2012 Florida Straits NI experiment. The depth contour interval is

100 m. (Right) Sound speed profiles measured in the vicinity of instruments

1 (dashed curve) and 3 (solid curve).

FIG. 2. Six-day coherent averages of CFs corresponding to instrument pairs 1-2

(top), and 2-3 (bottom) measured during the December 2012 NI experiment.

1326 J. Acoust. Soc. Am. 138 (3), September 2015 Zang et al.



Note in this regard that the CFs analyzed here were produced

by coherently stacking short-time CF estimates over a dura-

tion (�6 days) that is long compared to the M2 tidal period,

and that energy at higher frequency and steeper propagation

angles is most susceptible to tidal-fluctuation-induced coher-

ence loss. To quantify the effect of tidal fluctuations, con-

sider a homogeneous ocean with sound speed c and constant

depth h, subject to a tidal perturbation dh. Let rhc denote the

range of a half ray cycle of a surface- and bottom-reflecting

ray connecting fixed instruments. At range r, the number of

half ray cycles is r=rhc ¼ r tan h=h. For each half ray cycle,

the path length perturbation is dh sin h. The total tidal-

induced path length perturbation over range r is then

ðrdh=hÞ sin h tan h and the total phase perturbation is

D/ðx; hÞ ¼ ðx=cÞðrdh=hÞ sin h tan h. It is shown in Sec.

9.8 of Brekhovskikh and Lysanov43 that if phase fluctuations

have a Gaussian pdf, the mean coherent field is weighted by

the function expð�ðD/Þ2=2Þ where D/ is evaluated with dh
set equal to its root-mean-square value. In our simulations,

this expression for the tidal-fluctuation-induced coherence

loss weighting function was used with dh set equal to 0.45

m, consistent with relevant environmental conditions.

With the above comments in mind, our simulated CFs

are computed by evaluating a weighted form of Eq. (4),

�CAB xð Þ ¼ �D xð Þ 1

4x

� �X
m

W x; hmð Þwm zAð Þ

� wm zBð ÞH 1ð Þ
0 km xð ÞrABð Þ; (5)

where Wðx; hmÞ ¼ sin hm expð�ðD/ðx; hmÞÞ2=2Þ. Note that

hm depends on both mode number and frequency, consistent

with the modal quantization condition, and the relationship

km ¼ ðx=cÞ cos hm. Consistent with the manner in which

measured CFs were processed, �DðxÞ was chosen to be a

Hanning window with zeros at 20 and 70 Hz. Fourier trans-

forming �CABðxÞ back to the time domain gives CABðtÞ. All

calculations shown below were performed using a slightly

modified form of the KRAKEN44 normal mode model.

III. CF WAVEFORM MODELING: THE INVERSE
PROBLEM

The results presented in Sec. II rely on approximate and

possibly incomplete descriptions of relevant physical proc-

esses. The validity of our mathematical description of these

processes needs to be demonstrated by showing equivalence

between measured and simulated CFs. But such a compari-

son is complicated by environmental uncertainty. In this sec-

tion, we describe a simple procedure to test our ability to

reproduce, using Eq. (5), measured CF waveforms, while

simultaneously allowing for plausible environmental uncer-

tainty. The ocean sound speed structure and bathymetry

were well characterized during the experiment. There is

much greater uncertainty in the seafloor structure and, in the

20–70 Hz band of interest, the influence of the seafloor struc-

ture on the water column sound field is expected to be signif-

icant. Thus, our inverse analysis focuses on seafloor

structure together with uncertainty [of O(10 m)] in the hori-

zontal separation r between instruments.

With these comments in mind, our inverse analysis

focuses on r and parameters that describe the seafloor struc-

ture, using some assumed parameterization. We focus on

CFs estimated using the 1-2 instrument pair, corresponding

to r of �5.01 km. We focus on the 1-2 instrument pair for

two reasons: (1) the SNR for the 1-2 instrument pair is

higher than that for the 2-3 instrument pair, and (2) the

assumption of range-independent bathymetry is a much bet-

ter approximation for the 1-2 pair than for the 2-3 pair. Note

that the mathematical expression for the weighting function

that was introduced in Sec. II was greatly simplified by the

assumption that the environment is range independent.

The following simple procedure is used to investigate

the inverse problem. A parameterization of the environment

is chosen, together with suitable bounds on the model param-

eters. A brute-force search over the relevant parameter space

is then conducted. For each combination of model parame-

ters, a suitable measure of misfit between simulated and

measured CFs is computed. The optimal set of model param-

eters is then chosen to be the set that minimizes the misfit.

For the results shown, the misfit was defined as

MðpÞ ¼
ðtend

tstart

½CmðtÞ � Csðp; tÞ�2dt; (6)

where the elements of the vector p are the model parameters,

CmðtÞ is the measured CF, and Csðp; tÞ is the simulated CF.

Because there is no absolute amplitude scale for CmðtÞ, both

CmðtÞ and Csðp; tÞ in Eq. (6) are normalized so that their

maximum absolute amplitudes are equal to 1. For the 1-2

pair tstart and tend were set equal to 3.2 s and 3.7 s, respec-

tively. The procedure just described can be claimed to lead

to an optimal solution for the range of parameter values

explored, but it is important to keep in mind that inversion

results depend on how one chooses to parameterize the envi-

ronment. For that reason, no claim to uniqueness can be

made. Several different environmental parameterizations

have been explored. Two of these are discussed below. With

guidance from a nearby seismic section45 in a similar geo-

logical setting, both parameterizations considered here

assume that the seafloor is a two-layer structure consisting of

a sediment layer overlying a substrate. Parameter limits were

chosen, in part, using guidance from Jensen et al.46 and, in

part, to insure that the minimum of the misfit function could

fall on a parameter limit only if a physical argument pre-

vented that limit from being exceeded.

First, consider an environmental model consisting of a

fluid sediment layer overlying a rigid bottom. We shall refer

to this as the four-parameter model. The four parameters that

we seek to estimate are the sediment sound speed cs, the

sediment density qs, the sediment layer thickness ds, and the

range r. A comparison of the measured CF and the best-

fitting four-parameter simulated CF is shown in Fig. 3.

Figure 4 shows two two-dimensional slices of the corre-

sponding misfit function Mðcs; dsÞ for fixed qs, r, and

Mðqs; rÞ for fixed cs,ds. Figure 4 also shows limits on the

search domain of the four unknown parameters. Not surpris-

ingly, the misfit M is less sensitive to qs than the other three

parameters. Minimizing the misfit function that we have

J. Acoust. Soc. Am. 138 (3), September 2015 Zang et al. 1327



chosen, Eq. (6), imposes a high penalty for a phase mis-

match, so it is not surprising that the phases of measured and

simulated CFs in Fig. 3 are in generally better agreement

than the amplitudes.

Next, we consider a slightly more general lossy fluid

model with eight unknown parameters: the sediment layer

sound speed cs, the sediment layer thickness ds, the sediment

layer density qs, the sediment layer attenuation as, the sub-

strate (bottom) sound speed cb, the substrate density qb, the

substrate attenuation ab, and the range r. A comparison of

the measured CF and the best-fitting eight-parameter simu-

lated CF is shown in Fig. 5. Figure 6 shows two two-

dimensional slices of the corresponding misfit function:

Mðcb; rÞ for fixed cs, ds, qs, as, qb, and ab, and Mðds; csÞ for

fixed qs, as, cb, qb, ab, and r. Figure 6 also shows the limits

of the search domain for the unknown parameters r; cs; ds,

and cb. The other four parameter searches were bounded by

the limits 1:2 < qs=qocean < 1:7; 1:7 < qb=qocean < 3:0;
0 < as < 1:0 dB/k, and 0 < ab < 1:2 dB/k.

IV. DISCUSSION

The results presented in Sec. III are representative of a

much larger set of qualitatively similar results. Other envi-

ronmental model parameterizations have been explored, as

have other choices of the misfit function. As noted above,

the type of analysis performed allows one to make only very

qualified statements about optimality and uniqueness of the

solution found; these issues are related to each other, and are

strongly tied to, and constrained by, the assumptions that

one makes about how to parameterize the environment.

Some specific comments about the results presented above

follow.

Although the four-parameter model corresponding to

the CF shown in Fig. 3 is optimal in the sense that we have

described, that solution appears to have a significant defect:

the leading edge of the energetic portion of the simulated CF

appears to be one cycle out of phase with the measured CF.

Consistent with this observation, the estimated value of r,

5.030 km, is a larger correction, 20 m, to the navigational

estimate than we expect. Convergence to a poor solution is

due to a combination of the choice of the misfit function

(recall the comments in Sec. III about the misfit function

imposing a high penalty on relative phase mismatch) and an

overly restrictive parameterization of the environment. As a

result, we have little confidence in the estimated four-

parameter model solution. That model will not be further

discussed.

In contrast, there is no obvious problem associated with

the solution found using the eight-parameter model (see Fig. 5).

The optimal parameters found using the eight-parameter model

are r¼ 5.000 km, cs¼ 1570 m/s, ds ¼ 9:0 m, qs=qocean ¼ 1:30;
as ¼ 0, cb¼ 1800 m/s, qb=qocean ¼ 2:20, and ab ¼ 0:8 dB/k.

We have estimated domains of uncertainty for each of these pa-

rameters by varying each parameter independently, keeping the

others fixed at their optimal values. Lower and upper bounds

FIG. 3. Measured CF (solid curve) and best-fitting four-parameter simulated

CF (dashed curve) for the 1-2 instrument pair.

FIG. 4. (Color online) Two two-dimensional slices of the four-parameter

misfit function for the 1-2 instrument pair: Mðcs; dsÞ for qs=qocean ¼ 1:90,

r¼ 5.030 km; and Mðqs=qocean; rÞ for cs¼ 1655 m/s, ds¼ 17 m.

FIG. 5. Measured 1-2 instrument pair CF (solid curve) and corresponding

simulated CF (dashed curve) computed using the optimal eight-parameter

environmental model with W ¼ sin h expð�ðD/Þ2=2Þ.

FIG. 6. (Color online) Two two-dimensional slices of the eight-parameter

misfit function for the 1-2 instrument pair: Mðcb; rÞ for cs¼ 1570 m/s,

ds¼ 9 m, qs=qocean¼1:3; as¼0; qb=qocean¼2:2; ab¼0:8 dB/k; and Mðds;csÞ
for r¼5.000 km, qs=qocean¼1:3; as¼0, cb¼1800 m/s, qb=qocean¼2:2;
ab¼0:8dB/k.

1328 J. Acoust. Soc. Am. 138 (3), September 2015 Zang et al.



on the uncertainty domain for the varied parameter were then

estimated as the nearest parameter values for which the misfit

M is higher than the absolute minimum, Mmin, of the misfit

function by an amount equal to 1% of the total range of M over

the entire search domain. (Although the choice of the threshold

value of M is somewhat arbitrary, this exercise gives a good

idea of the range of parameters for which agreement between

measured and simulated CFs is very good.) The procedure

just described gives the following bounds: 4:999 km < r
< 5:001 km, 1567 m=s < cs < 1575 m=s, 8:8 m < ds < 9:2 m,

1:24 < qs=qocean < 1:36, 0dB=k < as < 0:42 dB=k, 1789 m=s

< cb < 1814 m=s, 2:09 < qb=qocean < 2:27, and 0:2 dB=k
< ab < 2:0 dB=k. It is clear from these bounds that our inver-

sion results do not provide strong constraints on estimates of as

and ab. Consistent with the assumed structure of our eight-

parameter model and our sediment layer thickness estimate, a

seismic section at a site in a geologically similar setting

(�15 km from the Florida Keys in water of �100 m deep and

�100 km to the southwest of our experimental site) reveals a

sediment layer, whose thickness is �10 m, overlying a lime-

stone formation.45 It is difficult to provide a quantitative assess-

ment of any of our other geo-acoustic parameter estimates.

Jiang et al.47 and Monjo et al.48 also performed geo-acoustic

inversions using data collected at sites that are approximately

120 and 230 km, respectively, north of our experimental site,

but in deeper water where the sediment layer thickness is

greater. Those authors and the references they cite (which list

non-acoustic measurements of bottom properties in the Florida

Straits) report a very broad range of parameter values, includ-

ing values of parameters that we have not considered like po-

rosity, shear wave speed and attenuation, and compressional

speed gradients. Compressional wave speed estimates in the

sediment range from 1540 m/s (Ref. 48) to 1683 m/s.47

Some features of the simulated CF based on the optimal

eight-parameter environmental model will now be described.

Figure 7 shows spectra of measured and simulated CFs.

Agreement is seen to be good. Recall that a Hanning window

has been applied to both spectra, so no insight into how well

the inversion procedure worked can be gleaned by compar-

ing spectral envelopes. In contrast, the locations of the zeros

in the spectrum of the simulated CF have not been con-

strained in any way, so the good agreement between the

locations of the zeros in the spectra of the simulated and

measured CFs gives one confidence that the estimated envi-

ronmental model is close to the true environment. Figure 8

shows measured and simulated CFs in overlapping narrow

(10 Hz) frequency bands. Within each 10 Hz band a

Hanning window weighting function was applied, and each

band-limited CF was normalized individually. Agreement

between measured and simulated CFs is seen to be good in

all frequency bands shown. Again, this gives confidence

that the estimated environmental model is close to the true

environment.

We turn our attention now to analysis of the CF esti-

mated using the 2-3 instrument pair. The estimated naviga-

tional separation between those instruments is 9.76 km. The

low SNR of the CF for this instrument pair (see Figs. 2 and

9) poses an obvious limitation. Also, along the path between

the 2-3 instrument pair the bottom depth varied between 86

and 100 m, compared to variations between 97 and 101 m

along the path between the 1-2 instrument pair. To model

propagation between the 2-3 instrument pair, the range-

independent assumption is not realistic. The combination of

low SNR and a range-dependent environment led us to give

up on the idea of performing the same type of analysis of

this data that was performed using the CFs estimated using

the 1-2 instrument pair. Instead, we use this data set as a con-

sistency test on the model parameters that were estimated

using the 1-2 instrument pair inverse analysis described

above. A comparison of measured and simulated CFs for the

2-3 instrument pair is shown in Fig. 9. To perform the simu-

lation, an adiabatic mode calculation44,46 was performed.

Such a calculation is expected to be accurate because bathy-

metric variations were gradual. The adiabatic mode calcula-

tion was performed assuming the sediment layer thickness

was constant and that all bottom parameters are identical to

those described above, based on the 1-2 instrument pair anal-

ysis. Note, however, that while the environment is assumed

fixed in this calculation, uncertainty in the range between

instruments 2 and 3 must be allowed and accounted for. This

led to a one-parameter inverse problem that was solved the

same way the four- and eight-parameter inverse problems

described in Sec. III were solved. The adiabatic mode calcu-

lation shown in Fig. 9 corresponds to the best-fitting value of

r. The optimal value of r was found to be 9.775 km, which

deviates by 15 m from the nominal navigation-based
FIG. 7. Spectra of measured CF (solid curve) and best-fitting eight-parame-

ter simulated CF (dashed curve) for the 1-2 instrument pair.

FIG. 8. Measured CF (solid curves) and best-fitting eight-parameter simu-

lated CF (dashed curves) for the 1-2 instrument pair in overlapping 10 Hz

bands.
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estimate. Considering the relatively low SNR of the meas-

ured CF, agreement between measured and simulated CFs in

Fig. 9 is fairly good. On the time interval from 6.35 s to 7.0 s

the correlation coefficient between measured and simulated

CFs is 70.6%.

We now address the question of whether inclusion of the

weighting function Wðx; hmÞ improves agreement between

measured and simulated CFs. Figure 10 shows a comparison

of the measured broadband (20–70 Hz) CF for the 1-2 instru-

ment pair with an unweighted (W¼ 1) simulation, computed

using the optimal parameter values listed above. Recall that

Fig. 5 shows a comparison of the same measured CF with a

weighted [using W ¼ sin h expð�ðD/Þ2=2Þ] simulated CF.

When comparing Figs. 5 and 10, it is useful to keep in mind

that the early arriving energy—prior to �3.35 s—is low-angle

energy that is strongly damped in Fig. 5 by the term sin h;

later-arriving energy is higher angle energy that is damped by

both sin h and expð�ðD/Þ2=2Þ, with neither term dominant.

Also, all CFs plotted in both Figs. 5 and 10 are normalized to

have maximum absolute amplitude equal to 1, which partially

obscures the aforementioned damping. (Some normalization

assumption must be made because there is no absolute ampli-

tude scale for measured CFs.) Differences between Figs. 5 and

10 are small; with the aforementioned normalization, correla-

tion coefficients between measured and simulated CFs are

96.3% when W ¼ sin h expð�ðD/Þ2=2Þ (Fig. 5) is used and

94.8% when W¼ 1 (Fig. 10) is used. The absence of strong

sensitivity to W is partly due to the normalization that

we have described, and partly due to the fact that replacing W
¼ sin h expð�ðD/Þ2=2Þ by W¼ 1 does not alter the good

phase agreement between measured and simulated CFs. It

should also be noted that because both the tidal-fluctuation-

induced coherence loss term expð�ðD/Þ2=2Þ and seafloor

attenuation serve to preferentially attenuate steep-angle energy

at higher frequencies, the optimal choice of the latter is

expected to depend on whether or not the former is included

in W. Although replacing W¼ 1 by W¼ sin h expð�ðD/Þ2=2Þ
results in only slightly better agreement between simulated

and measured CFs, that replacement represents an important,

albeit incomplete, step toward describing the relevant underly-

ing physics that contribute to the measured CF.

V. SUMMARY

We have addressed the problem of waveform model-

ing of ambient noise CFs using measurements collected in

a 100 m deep coastal ocean environment at both 5 and

10 km range. CFs are closely related, but not identical, to

the GFs that describe propagation between the two mea-

surement locations. To model CF waveforms, subtle differ-

ences between CFs and GFs must be accounted for. We

have accounted for a phase difference that is predicted the-

oretically and we have introduced a physically motivated

amplitude weighting function in our simulated CFs. The

latter accounts for the directivity of the predominantly

near-surface noise sources, and the effective filtering of

high frequency and steep angle energy that results from

coherently stacking many realizations of short-time esti-

mates of the CF.

Measured CFs are, of course, also sensitive to the envi-

ronment, so our focus on modeling CF waveforms has led

us to simultaneously consider the inverse problem of esti-

mating an optimal set of environmental parameters. This

was accomplished using a simple parameterization of the

environment, together with a brute-force search over a suit-

ably bounded parameter space to identify the set of model

parameters that minimize the chosen measure of misfit

between measured and simulated CFs. That effort focused

on analysis of CFs corresponding to an instrument separa-

tion of 5 km, both because those CFs have relatively high

SNR and because the 5 km range environment is to a good

approximation range independent. The CF corresponding to

an instrument separation of 10 km was used as a consis-

tency test of the environmental model parameters found

using the 5 km data. The 10 km separation data were mod-

eled using an adiabatic normal mode calculation, which

showed fairly good agreement between measured and simu-

lated CFs.

Our focus on modeling CF waveforms has led us to con-

sider small but important differences between CFs and GFs,

and to investigate the inverse problem. These issues are

related inasmuch as one cannot expect to find good agree-

ment between measured and simulated CFs unless the

FIG. 9. Measured CF (solid curve) and

simulated CF (dashed curve) for the 2-

3 instrument pair.

FIG. 10. Measured 1-2 instrument pair CF (solid curve) and corresponding

simulated CF (dashed curve) computed using the optimal eight-parameter

environmental model with W¼ 1.
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environmental model used to produce the simulated CF is

close to the true environment. Waveform matching of the

type we have performed generally does not lead to a solu-

tion to the inverse problem that can be proved to be unique,

even when active source transmissions are utilized. This

problem is somewhat exacerbated in NI applications. That

is because the optimal set of model parameters that one

finds will, in general, depend on the weighting function

Wðx; hÞ that is used to compute simulated CFs. A poor

choice of Wðx; hÞ will lead to a biased set environmental

model parameters. The form of Wðx; hÞ that we have cho-

sen is a good approximation in the environment considered,

but has clear limitations. The surface dipole excitation term

sin h that we have used does not account for subsurface

sound sources or scattering processes that lead to the con-

version of steep angle energy to shallow angle energy. The

Gaussian coherence loss term that we have used accounts

only for tidal-fluctuation-induced coherence loss, and

makes the idealized assumption that tidally induced sea sur-

face height fluctuations have a Gaussian distribution. No

other coherence loss mechanism was accounted for in our

simulated CFs. In measured CFs, there is no simple way to

distinguish between coherence loss mechanisms and attenu-

ation mechanisms.

With the aforementioned limitations and caveats, we

have computed simulated CFs that account for the theoreti-

cally predicted phase difference between CFs and GFs, and

that include a physically motivated weighting function

Wðx; hÞ that is a good approximation in the environment

considered. Simulated CFs were used as the basis for a sim-

ple treatment of the inverse problem that resulted in an envi-

ronmental model for which simulated CFs were shown to be

in good agreement with their measured counterparts for

instrument separations of both 5 and 10 km.
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APPENDIX

A simple derivation of the fundamental results of acous-

tic NI in a stationary environment is presented. The argu-

ment presented assumes weak dissipation, thereby avoiding

a divergent correlation function and an indeterminant singu-

lar limit.

Convolutions and cross-correlations appear in the argu-

ments that follow. Consider real-valued functions f1ðtÞ
and f2ðtÞ. Convolution of f1ðtÞ and f2ðtÞ is defined as

f1ðtÞ � f2ðtÞ ¼
Ð1
�1 dsf1ðsÞf2ðt� sÞ. The cross-correlation of

f1ðtÞ and f2ðtÞ is defined as f1ðtÞ � f2ð�tÞ ¼
Ð1
�1 dsf1ðsÞf2ðt

þ sÞ. Let �f1ðxÞ ¼
Ð1
�1 f1ðtÞeixtdt denote the Fourier trans-

form of f1ðtÞ; all variables of interest are real-valued, so it is

assumed that �f1ð�xÞ ¼ �f1
�ðxÞ, where the superscript “�”

denotes complex conjugation. The Fourier transform of the

convolution f1ðtÞ � f2ðtÞ is �f1ðxÞ�f2ðxÞ, and the Fourier trans-

form of the cross-correlation f1ðtÞ � f2ð�tÞ is �f1ðxÞ�f2
�ðxÞ.

We formulate the acoustic NI problem in terms of the

acoustic pressure p because this is the quantity that is nor-

mally measured. Neglecting dissipation (for now), the time-

dependent acoustic pressure pðxjx0; tÞ at position x due to a

transient point source, at position x0 and with time history

s(t), satisfies

r2 � 1

c2 xð Þ
@2

@t2

 !
p xjx0; tð Þ ¼ �d x� x0ð Þs tð Þ:

Equivalently, pðxjx0; tÞ ¼ sðtÞ � Gðxjx0; tÞ where the GF

Gðxjx0; tÞ satisfies

r2 � 1

c2 xð Þ
@2

@t2

 !
G xjx0; tð Þ ¼ �d x� x0ð Þd tð Þ;

or, in the frequency domain, �pðxjx0;xÞ ¼ �sðxÞ �Gðxjx0;xÞ
where �Gðxjx0;xÞ satisfies

ðr2 þ k2ðxÞÞ �Gðxjx0;xÞ ¼ �dðx� x0Þ

and k2ðxÞ ¼ x2=c2ðxÞ. In an unbounded homogeneous environ-

ment �Gðxjx0;xÞ ¼ eikr=ð4prÞ and Gðxjx0; tÞ ¼ dðt� r=cÞ=
ð4prÞ where r ¼ jx� x0j.

Assume a random distribution of discrete point sources

at positions xi and with time histories siðtÞ. Then pðxAjxi; tÞ
¼ siðtÞ � GðxAjxi; tÞ is the contribution to the acoustic pres-

sure at location xA from the source at xi. Similarly, the

acoustic pressure at xB due to the source at xj is pðxBjxj; tÞ
¼ sjðtÞ � GðxBjxj; tÞ. Now sum up the contributions from all

of the random sources and compute the cross-correlation of

the acoustic pressures at locations A and B:

CABðtÞ ¼
X

i

pðxAjxi; tÞ �
X

j

pðxBjxj;�tÞ

¼
X

i

X
j

siðtÞ �GðxAjxi; tÞ � sjð�tÞ �GðxBjxj;�tÞ

¼ DðtÞ �
X

i

GðxAjxi; tÞ �GðxBjxi;�tÞ:

We have assumed that the acoustic sources are independent

and approximately d-correlated,

siðtÞ � sjð�tÞ ¼ dijDðtÞ: (A1)

Equivalently, �siðxÞ�s�j ðxÞ ¼ dij
�DðxÞ. Note that �DðxÞ ¼ j�sij2

is real, or, equivalently, has zero phase. This condition is sat-

isfied in all of the processing performed in this paper. The

above argument can be modified to account for a continuum

of sources. The result is

CABðtÞ ¼ DðtÞ �
ð ð ð

dx GðxAjx; tÞ �GðxBjx;�tÞ: (A2)
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[The dimensions of D(t) are different in the discrete and con-

tinuum problems, but that subtlety has no bearing on the

arguments that follow. We use only Eq. (A2) below.]

In the presence of weak dissipation, which is assumed to

be proportional to x times the parameter �=2, the GF
�GðxjxA;xÞ at x, corresponding to point source excitation at

xA, satisfies

ðr2 þ k2 þ ix�=2Þ �GðxjxA;xÞ ¼ �dðx� xAÞ: (A3)

Similarly, �G at point x excited by a point source at xB

satisfies

ðr2 þ k2 þ ix�=2Þ �GðxBjx;xÞ ¼ �dðx� xBÞ: (A4)

Due to reciprocity �GðxjxA;xÞ is equal to �GðxAjx;xÞ, and
�GðxjxB;xÞ is equal to �GðxBjx;xÞ. Multiplication of Eq.

(A3) by �G
�ðxBjx;xÞ, followed by integration over x, and

complex conjugation of left- and right-hand sides givesð ð ð
dx �GðxBjx;xÞðr2 þ k2 � ix�=2Þ �G

�

� ðxAjx;xÞ ¼ � �GðxBjxA;xÞ: (A5)

Multiplication of Eq. (A4) by �G
�ðxAjx;xÞ, followed by inte-

gration over x givesð ð ð
dx �G

�ðxAjx;xÞðr2 þ k2 þ ix�=2Þ

� �GðxBjx;xÞ ¼ � �G
�ðxAjxB;xÞ: (A6)

Subtracting Eq. (A6) from Eq. (A5) gives

Q� ix�
ð ð ð

dx �GðxBjx;xÞ �G
�ðxAjx;xÞ

¼ �G
�ðxAjxB;xÞ � �GðxBjxA;xÞ; (A7)

where

Q ¼
ð ð ð

dx �GðxBjx;xÞr2 �G
�ðxAjx;xÞ

�
ð ð ð

dx �G
�ðxAjx;xÞr2 �GðxBjx;xÞ

¼
ð ð

dr½ �GðxBjx;xÞr �G
�ðxAjx;xÞ

� �G
�ðxAjx;xÞr �GðxBjx;xÞ� � n̂:

By reciprocity �GðxBjxA;xÞ ¼ �GðxAjxB;xÞ, so the right-hand

side of Eq. (A7) can be written �2 Im �GðxBjxA;xÞ. The

second form of Q given above follows from applying the

divergence theorem to
Ð Ð Ð

dxr � ½ �GðxBjx;xÞr �G
�ðxAjx;xÞ

� �G
�ðxAjx;xÞr �GðxBjx;xÞ�. The integral in the latter form

of Q is a surface integral over the boundary of the x-domain

and n̂ is a unit outward normal. That integral vanishes under

most conditions of interest. In an unbounded homogeneous

environment, consider the domain enclosed within a large

sphere of radius R centered at the midpoint between xA and

xB. Owing to dissipation, for large R, �G andr �G � n̂ approach

zero faster than R�1, so Q approaches 0 in the large R limit.

Note also that in an x-domain bounded by a combination of

rigid walls (where r �G � n̂ ¼ 0) and pressure release surfaces

(where �G ¼ 0), each term in Q vanishes so Q¼ 0. Setting

Q¼ 0 in Eq. (A7) gives

�ix�
ð ð ð

dx �GðxBjx;xÞ �G
�ðxAjx;xÞ

¼ �G
�ðxAjxB;xÞ � �GðxBjxA;xÞ: (A8)

Transforming to the time domain gives

�
d

dt

ð ð ð
dx G xBjx; tð Þ � G xAjx;�tð Þ

¼ G xBjxA;�tð Þ � G xBjxA; tð Þ; (A9)

where “�” (not a superscript) denotes convolution. Recall

that the convolution of GðxBjx; tÞ and GðxAjx;�tÞ is equiva-

lent to the cross-correlation of GðxBjx; tÞ and GðxAjx; tÞ.
Finally, differentiating Eq. (A2) and making use of Eq.

(A9) gives

d

dt
�CAB tð Þ½ � ¼ D tð Þ � G xBjxA;�tð Þ � G xBjxA; tð Þ½ �:

(A10)

Dissipation plays an important role in the arguments leading

to Eq. (A10). The assumptions that we have made about the

distribution and time history of the sources lead to a diver-

gent CAB in the limit �! 0; that limit is a singular limit.

More generally, CABðtÞ increases in magnitude with decreas-

ing e. For small e, we may think of �CABðtÞ as the effective

correlation function and approximate this quantity as a con-

stant times a long-time, but finite-time, approximation to the

correlation function, and replace the GFs on the right-hand

side of Eq. (A10) with their dissipationless counterparts.

1S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical
Radiophysics. 3: Elements of Random Fields (Springer, New York, 1989).

2O. I. Lobkis and R. L. Weaver, “On the emergence of the Green’s function

in the correlations of a diffuse field,” J. Acoust. Soc. Am. 110, 3011–3017

(2001).
3K. Wapenaar, “Retrieving the elastodynamic Green’s function of an arbi-

trary inhomogeneous medium by cross correlation,” Phys. Rev. Lett. 93,

254301 (2004).
4R. Snieder, “Extracting the Green’s function from the correlation of coda

waves: A derivation based on stationary phase,” Phys. Rev. E 69, 046610

(2004).
5R. L. Weaver and O. I. Lobkis, “Fluctuations in diffuse field-field correla-

tions and the emergence of the Green’s function in open systems,”

J. Acoust. Soc. Am. 117, 3432–3439 (2005).
6K. G. Sabra, P. Roux, and W. A. Kuperman, “Emergence rate of the time-

domain Green’s function from the ambient noise cross-correlation

function,” J. Acoust. Soc. Am. 118, 3524–3531 (2005).
7O. A. Godin, “Recovering the acoustic Green’s function from ambient

noise cross-correlation in an inhomogeneous moving medium,” Phys.

Rev. Lett. 97, 054301 (2006).
8O. A. Godin, “Retrieval of Green’s functions of elastic waves from ther-

mal fluctuations of fluid-solid systems,” J. Acoust. Soc. Am. 125,

1960–1970 (2009).
9J. Garnier and J. Papanicolaou, “Passive sensor imaging using cross corre-

lations of noisy signals in a scattering medium,” SIAM J. Imaging Sci. 2,

396–437 (2009).

1332 J. Acoust. Soc. Am. 138 (3), September 2015 Zang et al.

http://dx.doi.org/10.1121/1.1417528
http://dx.doi.org/10.1103/PhysRevLett.93.254301
http://dx.doi.org/10.1103/PhysRevE.69.046610
http://dx.doi.org/10.1121/1.1898683
http://dx.doi.org/10.1121/1.2109059
http://dx.doi.org/10.1103/PhysRevLett.97.054301
http://dx.doi.org/10.1103/PhysRevLett.97.054301
http://dx.doi.org/10.1121/1.3082101
http://dx.doi.org/10.1137/080723454


10R. B. Weaver, B. Froment, and M. Campillo, “On the correlation of non-

isotropically distributed ballistic scalar diffuse waves,” J. Acoust. Soc.

Am. 126, 1817–1826 (2009).
11O. A. Godin, “Cross-correlation function of acoustic fields generated by ran-

dom high- frequency sources,” J. Acoust. Soc. Am. 128, 600–610 (2010).
12M. G. Brown, “Noise interferometry in an inhomogeneous environment in

the geometric limit,” J. Acoust. Soc. Am. 130, EL173–EL179 (2011).
13N. A. Zabotin and O. A. Godin, “Emergence of acoustic Green’s functions

from time averages of ambient noise,” Acta Acust. Acust. 97, 44–53

(2011).
14M. Campillo and A. Paul, “Long-range correlations in the diffuse seismic

coda,” Science 299, 547–549 (2003).
15N. M. Shapiro, M. Campillo, L. Stehly, and M. Ritzwoller, “High resolu-

tion surface wave tomography from ambient seismic noise,” Science 307,

1615–1618 (2005).
16Y. Yang, M. H. Ritzwoller, A. L. Levshin, and N. M. Shapiro, “Ambient

noise Rayleigh wave tomography across Europe,” Geophys. J. Int. 168,

259–274 (2007).
17M. Campillo and P. Roux, “Seismic imaging and monitoring with ambient

noise correlations,” in Treatise of Geophysics, edited by B. Romanowicz

and A. Dziewonski (Elsevier, Amsterdam, 2014), Vol. 1, pp. 256–271.
18T. L. Duvall, Jr., S. M. Jeffferies, J. W. Harvey, and M. A. Pomerantz,

“Time-distance helioseismology,” Nature 362, 430–432 (1993).
19J. E. Rickett and J. F. Claerbout, “Calculation of the Sun’s impulse

response by multi-dimensional spectral factorization,” Sol. Phys. 192,

203–210 (2000).
20M. M. Haney, “Infrasonic ambient noise interferometry from correlations

of microbaroms,” Geophys. Res. Lett. 36, L19808, doi:10.1029/

2009GL040179 (2009).
21J. T. Fricke, L. G. Evers, P. S. M. Smets, K. Wapenaar, and D. G. Simons,

“Infrasonic interferometry applied to microbaroms observed at the Large

Aperture Infrasound Array in the Netherlands,” J. Geophys. Res.: Atmos.

119, 9654–9665 (2014).
22O. A. Godin, V. G. Irisov, and M. I. Charnotskii, “Passive acoustic meas-

urements of wind velocity and sound speed in air,” J. Acoust. Soc. Am.

135(2), EL68–EL74 (2014).
23R. Snieder and E. Safak, “Extracting the building response using seismic

interferometry; Theory and application to the Millikan Library in

Pasadena, California,” Bull. Seismol. Soc. Am. 96, 586–598 (2006).
24K. G. Sabra, E. S. Winkel, D. A. Bourgoyne, B. R. Elbing, S. L. Ceccio,

M. Perlin, and D. R. Dowling, “Using cross correlations of turbulent flow-

induced ambient vibrations to estimate the structural impulse response.

Application to structural health monitoring,” J. Acoust. Soc. Am. 121,

1987–2005 (2007).
25O. A. Godin, N. A. Zabotin, A. F. Sheehan, and J. A. Collins,

“Interferometry of infragravity waves off New Zealand,” J. Geophys. Res.

Oceans 119(2), 1103–1122 (2014).
26P. Roux, W. A. Kuperman and the NPAL Group, “Extracting coherent

wave fronts from acoustic ambient noise in the ocean,” J. Acoust. Soc.

Am. 116, 1995–2003 (2004).
27L. A. Brooks and P. Gerstoft, “Ocean acoustic interferometry,” J. Acoust.

Soc. Am. 121, 3377–3385 (2007).
28S. E. Fried, W. A. Kuperman, K. G. Sabra, and P. Roux, “Extracting the

local Green’s function on a horizontal array from ambient ocean noise,”

J. Acoust. Soc. Am. 124, EL183–EL188 (2008).
29L. A. Brooks and P. Gerstoft, “Green’s function approximation from

cross-correlations of 20–100 Hz noise during a tropical storm,” J. Acoust.

Soc. Am. 125, 723–734 (2009).

30O. A. Godin, N. A. Zabotin, and V. V. Goncharov, “Ocean tomography

with acoustic daylight,” Geophys. Res. Lett. 37, L13605, doi:10.1029/

2010GL043623 (2010).
31O. A. Godin, “On the possibility of using acoustic reverberation for

remote sensing of the ocean dynamics,” Acoust. Phys. 58(1), 129–138

(2012).
32K. G. Sabra, S. Fried, W. A. Kuperman, and M. Prior, “On the coherent

components of low-frequency ambient noise in the Indian Ocean,”

J. Acoust. Soc. Am. 133, EL20–EL25 (2013).
33S. E. Fried, S. C. Walker, W. S. Hodgkiss, and W. A. Kuperman,

“Measuring the effect of ambient noise directionality and split-beam proc-

essing on the convergence of the cross-correlation function,” J. Acoust.

Soc. Am. 134, 1824–1832 (2013).
34S. W. Lani, K. G. Sabra, W. S. Hodgkiss, W. A. Kuperman, and P. Roux,

“Coherent processing of shipping noise for ocean monitoring,” J. Acoust.

Soc. Am. 133, EL108–EL113 (2013).
35M. Siderius, C. H. Harrison, and M. B. Porter, “A passive fathometer tech-

nique for imaging seabed layering using ambient noise,” J. Acoust. Soc.

Am. 120, 1315–1323 (2006).
36M. Siderius, H. Song, P. Gerstoft, W. S. Hodgkiss, P. Hursky, and C.

Harrison, “Adaptive passive fathometer processing,” J. Acoust. Soc. Am.

127, 2193–2200 (2010).
37C. Yardim, P. Gerstoft, W. S. Hodgkiss, and J. Traer, “Compressive geoa-

coustic inversion using ambient noise,” J. Acoust. Soc. Am. 135,

1245–1255 (2014).
38O. A. Godin, “Accuracy of the deterministic travel times retrieval from

cross-correlations of non-diffuse ambient noise,” J. Acoust. Soc. Am. 126,

EL183–EL189 (2009).
39M. G. Brown, O. A. Godin, N. J. Williams, N. A. Zabotin, L. Zabotina,

and G. J. Banker, “Acoustic Green’s function extraction from ambient

noise in a coastal ocean environment,” Geophys. Res. Lett. 41,

5555–5562, doi:10.1002/2014GL060926 (2014).
40O. A. Godin, M. G. Brown, N. A. Zabotin, L. Zabotina, and N. J.

Williams, “Passive acoustic measurement of flow velocity in the Straits of

Florida,” Geosci. Lett. 1, 16 (2014).
41J. A. Hildebrand, “Anthropogenic and natural sources of ambient noise in

the ocean,” Mar. Ecol. Prog. Ser. 395, 5–20 (2009).
42D. S. Ahluwalia and J. B. Keller, “Exact and asymptotic representations of

the sound field in a stratified ocean,” in Wave Propagation and
Underwater Acoustics, Lecture Notes in Physics, Vol. 70, edited by J. B.

Keller and J. S. Papadakis (Springer, New York, 1977).
43L. M. Brekhovskikh and Yu. P. Lysanov, Fundamentals of Ocean

Acoustics, 3rd ed. (Springer, New York, 2003).
44M. B. Porter, “The KRAKEN normal mode program,” http://oalib.

hlsresearch.com/Modes/kraken.pdf (Last viewed 3/19/2015).
45F. S. Anselmetti, G. A. von Salis, K. J. Cunningham, and G. P. Eberli,

“Acoustic properties of Neogene carbonates and siliciclastics from the

subsurface of the Florida Keys: Implications for seismic reflectivity,” Mar.

Geol. 144, 9–31 (1997).
46F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt,

Computational Ocean Acoustics (Springer, New York, 2000), Chap. 1, 5.
47Y. Jiang, N. R. Chapman, and H. A. Deferrari, “Geoacoustic inversion of

broadband data by matched beam processing,” J. Acoust. Soc. Am. 119,

3707–3715 (2006).
48C. L. Monjo, H. Nguyen, and H. A. Deferrari, “Modulations of detectable

pulse response time spread in shallow water resulting from a combination

of sound-speed variability and bottom loss,” J. Acoust. Soc. Am. 102,

2083–2097 (1997).

J. Acoust. Soc. Am. 138 (3), September 2015 Zang et al. 1333

http://dx.doi.org/10.1121/1.3203359
http://dx.doi.org/10.1121/1.3203359
http://dx.doi.org/10.1121/1.3458815
http://dx.doi.org/10.1121/1.3610260
http://dx.doi.org/10.3813/AAA.918385
http://dx.doi.org/10.1126/science.1078551
http://dx.doi.org/10.1126/science.1108339
http://dx.doi.org/10.1111/j.1365-246X.2006.03203.x
http://dx.doi.org/10.1038/362430a0
http://dx.doi.org/10.1023/A:1005205406377
http://dx.doi.org/10.1029/2009GL040179
http://dx.doi.org/10.1002/2014JD021663
http://dx.doi.org/10.1121/1.4862885
http://dx.doi.org/10.1785/0120050109
http://dx.doi.org/10.1121/1.2710463
http://dx.doi.org/10.1002/2013JC009395
http://dx.doi.org/10.1002/2013JC009395
http://dx.doi.org/10.1121/1.1797754
http://dx.doi.org/10.1121/1.1797754
http://dx.doi.org/10.1121/1.2723650
http://dx.doi.org/10.1121/1.2723650
http://dx.doi.org/10.1121/1.2960937
http://dx.doi.org/10.1121/1.3056563
http://dx.doi.org/10.1121/1.3056563
http://dx.doi.org/10.1029/2010GL043623
http://dx.doi.org/10.1134/S1063771012010101
http://dx.doi.org/10.1121/1.4769401
http://dx.doi.org/10.1121/1.4816490
http://dx.doi.org/10.1121/1.4816490
http://dx.doi.org/10.1121/1.4776775
http://dx.doi.org/10.1121/1.4776775
http://dx.doi.org/10.1121/1.2227371
http://dx.doi.org/10.1121/1.2227371
http://dx.doi.org/10.1121/1.3303985
http://dx.doi.org/10.1121/1.4864792
http://dx.doi.org/10.1121/1.3258064
http://dx.doi.org/10.1002/2014GL060926
http://dx.doi.org/10.1186/s40562-014-0016-6
http://dx.doi.org/10.3354/meps08353
http://oalib.hlsresearch.com/Modes/kraken.pdf
http://oalib.hlsresearch.com/Modes/kraken.pdf
http://dx.doi.org/10.1016/S0025-3227(97)00081-9
http://dx.doi.org/10.1016/S0025-3227(97)00081-9
http://dx.doi.org/10.1121/1.2195114
http://dx.doi.org/10.1121/1.419626

	s1
	l
	n1
	n2
	s2
	d1
	d2
	d3
	d4
	f1
	f2
	d5
	s3
	d6
	s4
	f3
	f4
	f5
	f6
	f7
	f8
	s5
	f9
	f10
	app1
	dA1
	dA2
	dA3
	dA4
	dA5
	dA6
	dA7
	app1
	dA8
	dA9
	dA10
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48

